George Green (mathematician) - Sneinton Road - Nottingham, Nottinghamshire
Posted by: Groundspeak Premium Member SMacB
N 52° 57.127 W 001° 07.922
30U E 625492 N 5868577
A plaque near the site of 8 Notintone Place where George Green (a British mathematical physicist) passed away 31 May 1841.
Waymark Code: WMW6QG
Location: East Midlands, United Kingdom
Date Posted: 07/17/2017
Published By:Groundspeak Premium Member Dragontree
Views: 0

A plaque, somewhat hidden away, near the site of 8 Notintone Place where George Green (a British mathematical physicist) passed away 31 May 1841.

"George Green (14 July 1793 – 31 May 1841) was a British mathematical physicist who wrote An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Green, 1828). The essay introduced several important concepts, among them a theorem similar to the modern Green's theorem, the idea of potential functions as currently used in physics, and the concept of what are now called Green's functions. Green was the first person to create a mathematical theory of electricity and magnetism and his theory formed the foundation for the work of other scientists such as James Clerk Maxwell, William Thomson, and others. His work on potential theory ran parallel to that of Carl Friedrich Gauss.

Green's life story is remarkable in that he was almost entirely self-taught. He received only about one year of formal schooling as a child, between the ages of 8 and 9.

Green was born and lived for most of his life in the English town of Sneinton, Nottinghamshire, now part of the city of Nottingham. His father, also named George, was a baker who had built and owned a brick windmill used to grind grain (visit link) .

In 1828, Green published An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, which is the essay he is most famous for today. It was published privately at the author's expense, because he thought it would be presumptuous for a person like himself, with no formal education in mathematics, to submit the paper to an established journal. When Green published his Essay, it was sold on a subscription basis to 51 people, most of whom were friends and probably could not understand it.

The wealthy landowner and mathematician Edward Bromhead bought a copy and encouraged Green to do further work in mathematics. Not believing the offer was sincere, Green did not contact Bromhead for two years.

By the time Green's father died in 1829, the senior Green had become one of the gentry due to his considerable accumulated wealth and land owned, roughly half of which he left to his son and the other half to his daughter. The young Green, now thirty-six years old, consequently was able to use this wealth to abandon his miller duties and pursue mathematical studies.

In his final years at Cambridge, Green became rather ill, and in 1840 he returned to Sneinton, only to die a year later. There are rumours that at Cambridge, Green had "succumbed to alcohol", and some of his earlier supporters, such as Sir Edward Bromhead, tried to distance themselves from him.

Green's work was not well known in the mathematical community during his lifetime. Besides Green himself, the first mathematician to quote his 1828 work was the Briton Robert Murphy (1806–1843) in his 1833 work. In 1845, four years after Green's death, Green's work was rediscovered by the young William Thomson (then aged 21), later known as Lord Kelvin, who popularised it for future mathematicians. According to the book "George Green" by D.M. Cannell, William Thomson noticed Murphy's citation of Green's 1828 essay but found it difficult to locate Green's 1828 work; he finally got some copies of Green's 1828 work from William Hopkins in 1845.

In 1871 N. M. Ferrers assembled The Mathematical Papers of the late George Green for publication.

Green's work on the motion of waves in a canal (resulting in what is known as Green's law) anticipates the WKB approximation of quantum mechanics, while his research on light-waves and the properties of the ether produced what is now known as the Cauchy-Green tensor. Green's theorem and functions were important tools in classical mechanics, and were revised by Schwinger's 1948 work on electrodynamics that led to his 1965 Nobel prize (shared with Feynman and Tomonaga). Green's functions later also proved useful in analysing superconductivity. On a visit to Nottingham in 1930, Albert Einstein commented that Green had been 20 years ahead of his time. The theoretical physicist Julian Schwinger who used Green's functions in his ground-breaking works, published a tribute entitled "The Greening of Quantum Field Theory: George and I" in 1993."

SOURCE - (visit link)

Further reading - (visit link)

There is a plaque in nearby St Stephen's church to commemorate the bicentenary of his birth
Type of Historic Marker: Plaque

Give your Rating:

Historical Marker Issuing Authority: Not listed

Age/Event Date: Not listed

Related Website: Not listed

Visit Instructions:
Please submit your visiting log with a picture of the object and include some interesting information about your visit.
Search for...
Geocaching.com Google Map
Google Maps
MapQuest
Bing Maps
Nearest Waymarks
Nearest UK Historical Markers
Nearest Geocaches
Create a scavenger hunt using this waymark as the center point
Recent Visits/Logs:
There are no logs for this waymark yet.