Burra-Burra Copper mines - Ducktown, Tennessee
Posted by: Groundspeak Regular Member BackBrakeBilly
N 35° 02.124 W 084° 22.713
16S E 739137 N 3880110
Quick Description: This is the Burra-Burra mining site in Ducktown Tennessee.
Location: Tennessee, United States
Date Posted: 8/31/2007 8:43:13 AM
Waymark Code: WM240W
Published By: Groundspeak Premium Member RakeInTheCache
Views: 269

Long Description:

The Cherokee knew of the rich deposits beneath the Basin and had actually smelted copper from this area. In 1838, the Cherokee were relocated west of the Mississippi to open the area for settlement by the white man. The official year of the discovery of copper in the area was 1843.

This spurred a copper rush to the Basin. Most of the miners were American, although many arrived from Cornwall, England in the earlier days. Later, Poles and Slavs arrived. In 1847, casks of ore were transported by mule to the closest railroad located in Dalton, Georgia. 1850 saw the opening of the first mine. This was the Hiawassee Mine located at Hiawassee (later Ducktown, Tennessee).

During 1853, a wagon road was cut through the Ocoee River Gorge. Ore was transported to Cleveland, Tennessee which was 30 miles closer than Dalton. At this time, Hiawassee resembled a western town. The miners worked hard and would carouse and fight for fun. In 1860, J. E. Raht (the Cecil Rhodes of the Copper Basin) began to consolidate much of the mining in the area. Mining was the chief industry for miles around. 1861 saw the completion of the first copper-rolling mill.

Federal troops occupied Cleveland in 1863. The mill was burned and mining ceased until 1865. During the early mining days, mules pulled ore cars underground. Some mules, upon entering the mines, never again saw the light of day and hence became blind. Both mules and oxen powered a whim (the wheel where rope was wound) which turned and brought the ore to the surface. Later, steam replaced the animals and by the mid 30's, electricity was used. Battery powered locomotives replaced the mules for underground transport.

Originally, work was done by pick and shovel. Later, blasting powder was used which allowed work to proceed at a faster pace, but was very dangerous. In 1872, both diamond drills and dynamite were first used. The dynamite was safer than the blasting powder, but blasts still were not "controlled".

Between the end of the Civil War and the turn of the century, about 24 million tons of ore had been produced.

In 1890, a rail line was completed between Marietta, Georgia and Knoxville, Tennessee. It bypassed Hiawassee. A station was opened at McCays (later Copperhill), Tennessee. An interesting feature along the railroad was called "the Loop". It circled the mountain, enabling the trains to travel the change in grade more easily.

The Tennessee Copper Company was formed in 1899. During the same year, the Burra Mine opened in Ducktown. Construction of a smelter was begun in Copperhill. In the early 20th century, the Tennessee Copper Company merged to form a British corporation, The Tennessee Copper Company and Ducktown Sulfur, Copper, and Iron Company, LTD. By 1907, the Tennessee Copper Company was trapping sulfur dioxide gas, which had previously been polluting and denuding the surrounding area. It was condensed to produce sulfuric acid.

Copperhill (population 600) was born when the name of the Post Office at McCays was changed in 1908. Copperhill was burned nearly to the ground on two nights in December of 1910.

After the turn of the century, products from the Basin became more diversified. For a short while near the beginning of World War I, TNT was produced and sold to the Russian government.

1922 saw the opening of a flotation plant at nearby London, Tennessee. This plant concentrated copper for the production of copper sulfate. Iron concentrate was produced in 1925. In 1927, London Mill produced the first zinc concentrate. By 1936, the Tennessee Copper Company was the only company operating in the Basin. The company provided housing for the miners. When promoted, a miner would move to another house higher up on the hill. Then someone would move into his old house. The company store provided food, clothing, and hardware items. Purchases were deducted from paychecks. Unfortunately, many miners never got out of debt.

In 1942, a large sulfuric acid plant was built at Copperhill and liquid sulfur dioxide was produced in 1949. 1959 saw the closing of the Burra Mine. It had operated for over 80 years and had produced 15,636,000 tons of ore! In 1960, the Central Mine began operation. This was a central point between the Boyd, Cherokee, and Calloway Mines. Drifts (tunnels) were cut to the other mines. The ore was transported to this point, the Central Mine, and brought to the surface. The Tennessee Copper Company was bought by Citiservices in 1963. Tennessee Copper Company became the Tennessee Chemical Company in 1982. To the dismay of the people throughout the region, in 1985, plans were announced that the mines would be closed. On July 31, 1987, mining ceased in the Copper Basin.

Today, you can see the Copper Basin and visit the Ducktown Basin Museum in Ducktown, Tennessee. The information provided there as well as the outdoor views are both educational and interesting. The Copper Basin is easily accessed from Atlanta by taking Interstate I-575 to Georgia highway 5 to Copperhill. Other ways to get there are by following U.S. 64 East from Cleveland, Tennessee or West from Murphy, North Carolina.


There have been four stages in producing materials in the Copper Basin: (1) Locating the ore bodies; (2) Developing-getting to the ore bodies; (3) Stoping-drilling, blasting, loading, and hauling of the ore; (4) Processing of the ore.

During early mining days, skilled labor was supplied by men who migrated to the Basin from mines in Corwall, England. The ore veins were located on the surface. Often this would be accomplished by looking for gossan. Ground waters of this area, seeping upward, carried iron hydroxides. This infiltrated the surface rocks (in this case schist) causing a darkening of the rocks. This is an indication of possible ore bodies below. These darkened rocks are gossan. After the vein was located, a shaft was sunk and horizontal tunnels (drifts) were dug. The levels were about 100 to 200 feet apart. Drill holes were bored in a pattern covering about 8 x 8 or 9 x 9 feet. Blasting powder was used and the charges were set. The ore would be removed and the drifts extended by the same process.

During the early days, one man held a steel rod while another man hit it with a sledge hammer. Later, a water air drill, using compressed air, was put into use. The development of diamond drifts and dynamite greatly improved the efficiency and production. Dynamite was safer than blasting powder though it took many more years to develop a controlled blast. The ore was blasted and transported to the surface. The copper-haulers then made the trip to the smelters in Cleveland, Tennessee.

Originally, teams of four mules, each carrying 500 pounds, made the trip in two days. Later, wagons pulled by mules or oxen were used. One night was spent camping at a halfway house. Upon arrival, the haulers would camp in an area known as Frogtown. Frogtown, Tennessee was bordered by marshes occupied by hundreds of frogs and "contained the shabby establishments of a bevy of morally-loose characters of the sexes who lived off of the campers". When leaving Cleveland, the haulers would transport goods back to Hiawassee. Later, stopes were used in mining. A stope was drilled upward from a drift and broadened into a V-shaped pattern. The material was blasted and would fall down into the drift for hauling. During the 1940's, compressed air-loading shovels were used to fill a series of connected ore cars. More ore could be brought out at one time using this method. At the time of the mine closings, dynamite had been replaced by another explosive. Blasting techniques had been improved to a science for a "safe" and controlled blast.

In 1985, 59 tons of explosives were set into place with 750 blasting caps. These were all connected by fuses and timed to go off in a sequence. Upon detonation, the entire blast took only 1.5 seconds! The blast broke up 300,000 tons of ore which provided material for eight months! The original method of processing the ore was to pile it up with wood. The wood was then set on fire and the ore smelted. Processing at the time of the mine closings differed considerably. The ore was blasted and dumped down a shaft for primary crushing. At the Cherokee Mine, the primary crusher was below sea level. The crushed material was loaded into cars or huge dump trucks and taken to be hoisted to the surface. The trucks were brought down into the mines in pieces and assembled in rooms larger than a high school gymnasium. Upon arrival at the surface, the ore went to secondary crushers where it was crushed to 1/2 inch size. It then went to a ballmill and was ground to a powder. The crushed ore went to the flotation plant where chemicals and oils were added. The slurry was agitated and the valuable minerals floated to the surface. The waste, known as gangue, went to the tailings (dumps). The material from the flotation plant was separated into three concentrates: iron, zinc, and copper sulfides. The water was removed and they were filtered. The copper concentrate went to the smelters where some of the sulfur content was removed and recovered for sulfuric acid. The remaining copper, called calcine, was roasted in a furnace. The molten calcine, called matte, was poured into ladles to go to the converter. The matte contained about 45% copper. The copper converter was a brick-lined cylinder into which air was blown through the matte. The sulfur was oxidized into sulfur dioxide which was collected for sulfuric acid. The iron formed iron oxide. Molten impurities were combined with silica to form slag. Being lighter than copper, the slag floated up to the surface and was skimmed off. The slag then went back to the furnace where any residual copper could be recovered. The final slag was then granulated and sold for filler in cement. Molten copper from the converter was poured into molds (pigs) where it cooled into ingots of blister copper. It was either sent off to be purified by electrolysis or poured molten into water to form shot copper. The shot was used to produce copper salts. The iron concentrate was roasted. The sulfur dioxide was captured for the acid plant. The sulfur dioxide gas carried off large amounts of iron oxide dust. By slowing the flow of gas, the dust was dropped. The iron oxide was treated with sulfuric acid to produce Ferri-Floc. This is the iron sulfate used in treating water and sewage. The roasted calcine concentrate was transported by water to settling tanks. The settled solids were sent to the sintering plant. The residual sulfur was burned and the remaining material was fused into lumps. The resulting product, known as sinter, was a very high grade iron oxide used in steel production and pig iron. Again, the sulfur gas was cleaned and cooled for use in the acid plant. From the original ores, the following products were produced: Granulated slag-- for cement Blister copper-- for further copper purification Copper salts-- for chemicals Ferri-Floc-- for water and sewage treatment Sinter-- for steel and pig iron Zinc concentrate-- for zinc Gold and silver were also produced as impurities from the ores.

Mine Type: Abandoned Mine

Mineral Collecting: Yes

Material Mined: Non-Precious Metal

Operation: Underground Mine

Surface Features: Yes

All dangers are outlined at the location.

Any associated website: [Web Link]

Any Other information: Not listed

Visit Instructions:
Optional photograph welcomed.
Search for...
Geocaching.com Google Map
Google Maps
Bing Maps
Trails.com Maps
Nearest Waymarks
Nearest Mines
Nearest Geocaches
Nearest Benchmarks
Nearest Hotels
Create a scavenger hunt using this waymark as the center point